hal/src/zutil/algo/ShanksTonelliAlgo.java
2015-05-27 13:13:19 +00:00

109 lines
3.3 KiB
Java

/*
* Copyright (c) 2015 ezivkoc
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
*
*/
package zutil.algo;
import java.math.BigInteger;
/**
* The algorithm solves the discreet log equation x^2 = n mod p
*
* @author Ziver
* @see http://en.wikipedia.org/wiki/Shanks-Tonelli_algorithm
*/
public class ShanksTonelliAlgo {
public static BigInteger calc(BigInteger n, BigInteger p){
BigInteger nOrg = n;
BigInteger S = null, V, R, U, X;
BigInteger ONE = BigInteger.ONE;
BigInteger TWO = BigInteger.valueOf( 2 );
BigInteger Q = p.add( ONE ).divide( TWO );
switch( p.mod( BigInteger.valueOf(4) ).intValue() ){
case 3:
S = n.pow( Q.divide( TWO ).intValue() ).mod( p );
break;
case 1:
S = ONE;
n = n.subtract( ONE );
while (n.divide( p ).compareTo( ONE ) == 0) {
S = S.add( ONE );
//n = (n-2s+1) mod p
n = n.subtract( TWO.multiply( S ) ).add( ONE ).mod( p );
if (n.compareTo( BigInteger.ZERO ) == 0){
return S;
}
}
Q = Q.divide( TWO );
V = ONE;
R = S;
U = ONE;
while (Q.compareTo( BigInteger.ZERO ) > 0) {
X = R.pow(2).subtract( n.multiply( U.pow(2) ) ).mod( p );
U = TWO.multiply( R ).multiply( U ).mod( p );
R = X;
if ( Q.testBit(0) ){
X = S.multiply( R ).subtract( n.multiply(V).multiply(U) ).mod( p );
V = V.multiply(R).add( S.multiply(U) ).mod( p );
S = X;
}
Q = Q.divide( TWO );
}
}
if( S != null && S.multiply( S ).mod( p ).compareTo( nOrg ) != 0 ){
return null;
}
return S;
/*
//p-1 = Q*2^S
BigInteger S = null, Q = null, R = null, V = null, W = null;
//Q = ( 2^S )/( 1-p );
p-1 = ( 2^S )/( 1-p ) * 2^S;
// R = n^( (Q+1)/2 ) mod p
R = n.pow( Q.add(BigInteger.ONE).divide(BigInteger.valueOf(2)).intValue() ).mod( p );
// V = W^Q mod p
V = W.pow( Q.intValue() ).mod( p );
for(int i=S.intValue(); true ;){
while( true ){
i--;
// 1 = ( ( R^2 * n^-1 )^2^i ) mod p
if( ( R.pow(2).multiply( n.pow(-1) ) ).pow( (int)Math.pow(2, i) ).mod( p ).compareTo( BigInteger.ONE ) == 0 )
break;
}
if(i == 0) return R;
//R = ( RV^(2^(S-i-1)) ) mod p
else R = ( R.multiply( V.pow( (int)Math.pow( 2, S.intValue()-i-1) ) )).mod( p );
}
*/
}
}