hal/arduino/HalMultiSensor/SensorDHT.cpp

165 lines
No EOL
5.9 KiB
C++

/* DHT library
MIT license
written by Adafruit Industries
*/
// Modified by Ziver Koc
//
#include "SensorDHT.h"
void SensorDHT::setup()
{
// set up the pins!
pinMode(_pin, INPUT_PULLUP);
#ifdef __AVR
_bit = digitalPinToBitMask(_pin);
_port = digitalPinToPort(_pin);
#endif
_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for
// reading pulses from DHT sensor.
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
// This is adapted from Arduino's pulseInLong function (which is only available
// in the very latest IDE versions):
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
uint32_t SensorDHT::expectPulse(bool level) {
uint32_t count = 0;
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
// right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
#endif
return count;
}
void SensorDHT::read(TemperatureData& retData)
{
// Reset 40 bits of received data to zero.
static uint8_t data[5];
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
digitalWrite(_pin, HIGH);
delay(250);
// First set data line low for 20 milliseconds.
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
uint32_t cycles[80];
{
// Turn off interrupts temporarily because the next sections are timing critical
// and we don't want any interruptions.
noInterrupts();
// End the start signal by setting data line high for 40 microseconds.
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
// Now start reading the data line to get the value from the DHT sensor.
pinMode(_pin, INPUT_PULLUP);
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == 0) {
DEBUG("DHT:Timeout waiting for start signal low pulse.");
interrupts();
return;
}
if (expectPulse(HIGH) == 0) {
DEBUG("DHT:Timeout waiting for start signal high pulse.");
interrupts();
return;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed all
// the pulses are read into a array and then examined in a later step.
for (int i=0; i<80; i+=2) {
cycles[i] = expectPulse(LOW);
cycles[i+1] = expectPulse(HIGH);
}
interrupts();
} // Timing critical code is now complete.
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i=0; i<40; ++i) {
uint32_t lowCycles = cycles[2*i];
uint32_t highCycles = cycles[2*i+1];
if ((lowCycles == 0) || (highCycles == 0)) {
DEBUG("DHT:Timeout waiting for pulse.");
return;
}
data[i/8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i/8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
switch (_type) {
case DHT11:
retData.temperature = data[2];
retData.humidity = data[0];
break;
case DHT22:
case DHT21:
retData.temperature = data[2] & 0x7F;
retData.temperature *= 256;
retData.temperature += data[3];
retData.temperature *= 0.1;
if (data[2] & 0x80) {
retData.temperature *= -1;
}
retData.humidity = data[0];
retData.humidity *= 256;
retData.humidity += data[1];
retData.humidity *= 0.1;
break;
}
}
else {
DEBUG("DHT:Checksum failure!");
}
}