Implemented a clone of the Tellstick Duo firmware that will wotrk on a Arduino.

So far only supports the Archtech Self Learning protocol.


Former-commit-id: 705f787fc30459a9d55dc571632dc4d01e7198f0
This commit is contained in:
Daniel Collin 2016-01-22 17:49:25 +01:00
parent 3c5da7baaf
commit e269faec13
11 changed files with 441 additions and 0 deletions

View file

@ -0,0 +1,100 @@
#include "rf.h"
#include "buffer.h"
#include "archtech.h"
#include "config.h"
volatile bool RFRX = false;
void parseRadioRXBuffer() {
static uint8_t* bufferReadP = RF_rxBufferStartP;
static uint8_t* startDataP = 0; //will always point to a "high" buffer address
static uint8_t* endDataP = 0; //will always point to a "low" buffer address
static uint8_t prevValue = 0; //contains the value of the previous buffer index read
bool parse = false;
while (bufferReadP != bufferWriteP) { //stop if the read pointer is pointing to where the writing is currently performed
if ( (((int)bufferReadP) & 0x1) == 1 ) { //buffer pointer is odd (stores highs)
if (prevValue >= SILENCE_LENGTH) {
startDataP = bufferReadP; //some new data must starrt here since this is the first "high" after a silent period
}
} else { //buffer pointer is even (stores lows)
if (*bufferReadP >= SILENCE_LENGTH) { //evaluate if it is time to parse the curernt data
endDataP = bufferReadP; //this is a silient period and must be the end of a data
parse = true;
break;
}
}
uint8_t* nextBufferReadP = getNextBufferPointer(bufferReadP);
if (nextBufferReadP == startDataP) { //next pointer will point to startDataP. Data will overflow. Reset the data pointers.
startDataP = 0;
endDataP = 0;
}
//advance buffer pointer one step
bufferReadP = nextBufferReadP;
prevValue = *bufferReadP; //update previous value
}
if (!parse) {
return;
}
if (startDataP == 0 || endDataP == 0) {
return;
}
/*
* At this point the startDataP will point to the first high after a silent period
* and the endDataP will point at the first (low) silent period after the data data start.
*/
//make sure that the data set size is big enought to parse.
uint16_t dataSetSize = calculateBufferPointerDistance(startDataP, endDataP);
if (dataSetSize < 32) { //at least 32 low/high
return;
}
//Let all available parsers parse the data set now.
parseArctechSelfLearning(startDataP, endDataP);
//TODO: add more parsers here
}; //end radioTask
void sendTCodedData(uint8_t* data, uint8_t T_long, uint8_t* timings, uint8_t repeat, uint8_t pause) {
RFRX = false; //turn off the RF reciever
for (uint8_t rep = 0; rep < repeat; ++rep) {
bool nextPinState = HIGH;
for (int i = 0; i < T_long; ++i) {
uint8_t timeIndex = (data[i / 4] >> (6 - (2 * (i % 4)))) & 0x03;
if (timings[timeIndex] > 0 || i == T_long - 1) {
digitalWrite(TX_PIN, nextPinState);
delayMicroseconds(10 * timings[timeIndex]);
}
nextPinState = !nextPinState;
}
digitalWrite(TX_PIN, LOW);
if (rep < repeat - 1) {
delay(pause);
}
}
RFRX = true; //turn on the RF reciever
};
void sendSCodedData(uint8_t* data, uint8_t pulseCount, uint8_t repeat, uint8_t pause) {
RFRX = false; //turn off the RF reciever
for (uint8_t rep = 0; rep < repeat; ++rep) {
bool nextPinState = HIGH;
for (int i = 0; i < pulseCount; ++i) {
if (data[i] > 0 || i == pulseCount - 1) {
digitalWrite(TX_PIN, nextPinState);
delayMicroseconds(data[i] * 10);
}
nextPinState = !nextPinState;
}
delay(pause);
}
RFRX = false; //turn on the RF reciever
};