Added MatrixMath class
This commit is contained in:
parent
c344856989
commit
eb67cdb9d5
3 changed files with 205 additions and 0 deletions
135
src/zutil/math/MatrixMath.java
Executable file
135
src/zutil/math/MatrixMath.java
Executable file
|
|
@ -0,0 +1,135 @@
|
|||
package zutil.math;
|
||||
|
||||
/**
|
||||
* Some basic matrix match functions.
|
||||
* Matrix definition: double[y][x].
|
||||
*/
|
||||
public class MatrixMath {
|
||||
|
||||
/***********************************************************************
|
||||
* Scalar
|
||||
**********************************************************************/
|
||||
/**
|
||||
* Scalar addition, every element in the matrix will
|
||||
* be added by the provided number
|
||||
*
|
||||
* @return same reference as matrix with the resulting addition
|
||||
*/
|
||||
public static double[][] add(double[][] matrix, double num){
|
||||
for (int y=0; y < matrix.length; ++y) {
|
||||
for (int x=0; x < matrix[y].length; ++x){
|
||||
matrix[y][x] = matrix[y][x] + num;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* Scalar subtraction, every element in the matrix will
|
||||
* be subtracted by the provided number
|
||||
*
|
||||
* @return same reference as matrix with the resulting subtraction
|
||||
*/
|
||||
public static double[][] subtract(double[][] matrix, double num){
|
||||
for (int y=0; y < matrix.length; ++y) {
|
||||
for (int x=0; x < matrix[y].length; ++x){
|
||||
matrix[y][x] = matrix[y][x] - num;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* Scalar multiplication, every element in the matrix will
|
||||
* be multiplied by the provided number
|
||||
*
|
||||
* @return same reference as matrix with the resulting multiplication
|
||||
*/
|
||||
public static double[][] multiply(double[][] matrix, double num){
|
||||
for (int y=0; y < matrix.length; ++y) {
|
||||
for (int x=0; x < matrix[y].length; ++x){
|
||||
matrix[y][x] = matrix[y][x] * num;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* Scalar division, every element in the matrix will
|
||||
* be multiplied by the provided number
|
||||
*
|
||||
* @return same reference as matrix with the resulting division
|
||||
*/
|
||||
public static double[][] divide(double[][] matrix, double num){
|
||||
for (int y=0; y < matrix.length; ++y) {
|
||||
for (int x=0; x < matrix[y].length; ++x){
|
||||
matrix[y][x] = matrix[y][x] / num;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
/***********************************************************************
|
||||
* Elemental
|
||||
**********************************************************************/
|
||||
|
||||
/**
|
||||
* Element addition, each element in matrix1 will be
|
||||
* added with the corresponding element in matrix2.
|
||||
*
|
||||
* @return same reference as matrix1 with the resulting addition
|
||||
*/
|
||||
public static double[][] add(double[][] matrix1, double[][] matrix2){
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
matrix1[y][x] = matrix1[y][x] + matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return matrix1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Element subtraction, each element in matrix1 will be
|
||||
* subtracted with the corresponding element in matrix2.
|
||||
*
|
||||
* @return same reference as matrix1 with the resulting subtraction
|
||||
*/
|
||||
public static double[][] subtract(double[][] matrix1, double[][] matrix2){
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
matrix1[y][x] = matrix1[y][x] - matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return matrix1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Element multiplication, each element in matrix1 will be
|
||||
* multiplied with the corresponding element in matrix2.
|
||||
*
|
||||
* @return same reference as matrix1 with the resulting multiplication
|
||||
*/
|
||||
public static double[][] multiply(double[][] matrix1, double[][] matrix2){
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
matrix1[y][x] = matrix1[y][x] * matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return matrix1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Element division, each element in matrix1 will be
|
||||
* dicided with the corresponding element in matrix2.
|
||||
*
|
||||
* @return same reference as matrix1 with the resulting division
|
||||
*/
|
||||
public static double[][] divide(double[][] matrix1, double[][] matrix2){
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
matrix1[y][x] = matrix1[y][x] / matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return matrix1;
|
||||
}
|
||||
}
|
||||
9
src/zutil/ml/neural/Perceptron.java
Executable file
9
src/zutil/ml/neural/Perceptron.java
Executable file
|
|
@ -0,0 +1,9 @@
|
|||
package zutil.ml.neural;
|
||||
|
||||
/**
|
||||
* This class represents one "nuron" in a neural network
|
||||
*/
|
||||
public class Perceptron {
|
||||
private float[] inputs;
|
||||
private float[] inputWeights;
|
||||
}
|
||||
61
test/zutil/math/MatrixMathTest.java
Executable file
61
test/zutil/math/MatrixMathTest.java
Executable file
|
|
@ -0,0 +1,61 @@
|
|||
package zutil.math;
|
||||
|
||||
import org.junit.Test;
|
||||
|
||||
import static org.junit.Assert.*;
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
public class MatrixMathTest {
|
||||
|
||||
@Test
|
||||
public void scalarAdd(){
|
||||
assertArrayEquals(new double[][]{{4,5},{-2,11}},
|
||||
MatrixMath.add(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void scalarSubtraction(){
|
||||
assertArrayEquals(new double[][]{{0,1},{-6,7}},
|
||||
MatrixMath.subtract(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void scalarMultiply(){
|
||||
assertArrayEquals(new double[][]{{4,6},{-8,18}},
|
||||
MatrixMath.multiply(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void scalarDivision(){
|
||||
assertArrayEquals(new double[][]{{1,2},{-2,5}},
|
||||
MatrixMath.divide(new double[][]{{2,4},{-4,10}}, 2));
|
||||
}
|
||||
|
||||
|
||||
|
||||
@Test
|
||||
public void elementalAdd(){
|
||||
assertArrayEquals(new double[][]{{3,5},{-1,13}},
|
||||
MatrixMath.add(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalSubtract(){
|
||||
assertArrayEquals(new double[][]{{1,1},{-7,5}},
|
||||
MatrixMath.subtract(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalMultiply(){
|
||||
assertArrayEquals(new double[][]{{2,6},{-12,36}},
|
||||
MatrixMath.multiply(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalDivision(){
|
||||
assertArrayEquals(new double[][]{{2,2},{-3,3}},
|
||||
MatrixMath.divide(new double[][]{{2,4},{-9,12}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue