Initial commit of LinearRegression class
This commit is contained in:
parent
3c8c692b16
commit
8050170ee3
5 changed files with 306 additions and 80 deletions
|
|
@ -4,7 +4,7 @@ package zutil.math;
|
|||
* Some basic matrix match functions.
|
||||
* Matrix definition: double[y][x].
|
||||
*/
|
||||
public class MatrixMath {
|
||||
public class Matrix {
|
||||
|
||||
/***********************************************************************
|
||||
* Scalar
|
||||
|
|
@ -74,71 +74,120 @@ public class MatrixMath {
|
|||
* Elemental
|
||||
**********************************************************************/
|
||||
|
||||
/**
|
||||
* Element addition, each element in matrix1 will be
|
||||
* added with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] add(double[][] matrix1, double[][] matrix2){
|
||||
elementalPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix1[0].length];
|
||||
public static class Elemental {
|
||||
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
result[y][x] = matrix1[y][x] + matrix2[y][x];
|
||||
/**
|
||||
* Element addition, each element in matrix1 will be
|
||||
* added with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] add(double[][] matrix1, double[][] matrix2) {
|
||||
elementalPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix1[0].length];
|
||||
|
||||
for (int y = 0; y < matrix1.length; ++y) {
|
||||
for (int x = 0; x < matrix1[y].length; ++x) {
|
||||
result[y][x] = matrix1[y][x] + matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Element subtraction, each element in matrix1 will be
|
||||
* subtracted with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] subtract(double[][] matrix1, double[][] matrix2){
|
||||
elementalPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix1[0].length];
|
||||
/**
|
||||
* Element subtraction, each element in matrix1 will be
|
||||
* subtracted with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] subtract(double[][] matrix1, double[][] matrix2) {
|
||||
elementalPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix1[0].length];
|
||||
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
result[y][x] = matrix1[y][x] - matrix2[y][x];
|
||||
for (int y = 0; y < matrix1.length; ++y) {
|
||||
for (int x = 0; x < matrix1[y].length; ++x) {
|
||||
result[y][x] = matrix1[y][x] - matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Element multiplication, each element in matrix1 will be
|
||||
* multiplied with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] elemMultiply(double[][] matrix1, double[][] matrix2){
|
||||
elementalPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix1[0].length];
|
||||
/**
|
||||
* Element multiplication, each element in matrix1 will be
|
||||
* multiplied with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] multiply(double[][] matrix1, double[][] matrix2) {
|
||||
elementalPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix1[0].length];
|
||||
|
||||
for (int y=0; y < matrix1.length; ++y) {
|
||||
for (int x=0; x < matrix1[y].length; ++x){
|
||||
result[y][x] = matrix1[y][x] * matrix2[y][x];
|
||||
for (int y = 0; y < matrix1.length; ++y) {
|
||||
for (int x = 0; x < matrix1[y].length; ++x) {
|
||||
result[y][x] = matrix1[y][x] * matrix2[y][x];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private static void elementalPreCheck(double[][] matrix1, double[][] matrix2) {
|
||||
if (matrix1.length != matrix2.length || matrix1[0].length != matrix2[0].length)
|
||||
throw new IllegalArgumentException("Matrices need to be of same dimension: " +
|
||||
"matrix1 " + matrix1.length + "x" + matrix1[0].length + ", " +
|
||||
"matrix2 " + matrix2.length + "x" + matrix2[0].length + ", ");
|
||||
/**
|
||||
* Element exponential, each element in the vector will raised
|
||||
* to the power of the exp paramter
|
||||
*
|
||||
* @return a new vector with the result
|
||||
*/
|
||||
public static double[] pow(double[] vector, double exp) {
|
||||
double[] result = new double[vector.length];
|
||||
|
||||
for (int i = 0; i < vector.length; ++i) {
|
||||
result[i] = Math.pow(vector[i], exp);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Element multiplication, each element in matrix1 will be
|
||||
* multiplied with the corresponding element in matrix2.
|
||||
*
|
||||
* @return a new matrix with the result
|
||||
*/
|
||||
public static double[][] pow(double[][] matrix, double exp) {
|
||||
double[][] result = new double[matrix.length][matrix[0].length];
|
||||
|
||||
for (int i = 0; i < matrix.length; ++i) {
|
||||
result[i] = pow(matrix[i], exp);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private static void elementalPreCheck(double[][] matrix1, double[][] matrix2) {
|
||||
if (matrix1.length != matrix2.length || matrix1[0].length != matrix2[0].length)
|
||||
throw new IllegalArgumentException("Matrices need to be of same dimension: " +
|
||||
"matrix1 " + matrix1.length + "x" + matrix1[0].length + ", " +
|
||||
"matrix2 " + matrix2.length + "x" + matrix2[0].length + ", ");
|
||||
}
|
||||
}
|
||||
|
||||
/***********************************************************************
|
||||
* Vector
|
||||
**********************************************************************/
|
||||
|
||||
/**
|
||||
* Vector subtraction, every element in the first vector will be subtracted
|
||||
* with the corresponding element in the second vector.
|
||||
*
|
||||
* @return a new vector with subtracted elements
|
||||
*/
|
||||
public static double[] subtract(double[] vector1, double[] vector2){
|
||||
vectorPreCheck(vector1, vector2);
|
||||
double[] result = new double[vector1.length];
|
||||
|
||||
for (int i=0; i < result.length; ++i) {
|
||||
result[i] = vector1[i] - vector2[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrix Vector multiplication, each element column in the matrix will be
|
||||
* multiplied with the corresponding element row in the vector.
|
||||
|
|
@ -175,6 +224,24 @@ public class MatrixMath {
|
|||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sums all values in a vector
|
||||
*
|
||||
* @return the summed value of all elements in the vector
|
||||
*/
|
||||
public static double sum(double[] vector) {
|
||||
double sum = 0;
|
||||
for (int i = 0; i < vector.length; i++) {
|
||||
sum += vector[i];
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
private static void vectorPreCheck(double[] vector1, double[] vector2) {
|
||||
if (vector1.length != vector2.length)
|
||||
throw new IllegalArgumentException("The two vectors need to have the same length: " +
|
||||
"vector1 " + vector1.length + "x1, vector2 " + vector2.length + "x1");
|
||||
}
|
||||
private static void vectorPreCheck(double[][] matrix, double[] vector) {
|
||||
if (matrix[0].length != vector.length)
|
||||
throw new IllegalArgumentException("Matrix columns need to have same length as vector length: " +
|
||||
|
|
@ -196,11 +263,10 @@ public class MatrixMath {
|
|||
matrixPreCheck(matrix1, matrix2);
|
||||
double[][] result = new double[matrix1.length][matrix2[0].length];
|
||||
|
||||
for (int y=0; y < result.length; ++y) {
|
||||
for (int x=0; x < result[y].length; ++x){
|
||||
|
||||
for (int i=0; i<matrix1[0].length; ++i) {
|
||||
result[y][x] += matrix1[y][i] * matrix2[i][x];
|
||||
for (int i=0; i < result.length; ++i) {
|
||||
for (int k=0; k<matrix1[0].length; ++k) {
|
||||
for (int j=0; j < result[i].length; ++j){
|
||||
result[i][j] += matrix1[i][k] * matrix2[k][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -221,6 +287,18 @@ public class MatrixMath {
|
|||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sums all values in a matrix
|
||||
*
|
||||
* @return the summed value of all elements
|
||||
*/
|
||||
public static double sum(double[][] matrix) {
|
||||
double sum = 0;
|
||||
for (int i = 0; i < matrix.length; i++) {
|
||||
sum += sum(matrix[i]);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
private static void matrixPreCheck(double[][] matrix1, double[][] matrix2) {
|
||||
if (matrix1[0].length != matrix2.length)
|
||||
38
src/zutil/ml/LinearRegression.java
Executable file
38
src/zutil/ml/LinearRegression.java
Executable file
|
|
@ -0,0 +1,38 @@
|
|||
package zutil.ml;
|
||||
|
||||
import zutil.math.Matrix;
|
||||
|
||||
/**
|
||||
* Implementation of a Linear Regression algorithm for "predicting"
|
||||
* numerical values depending on specific input
|
||||
*/
|
||||
public class LinearRegression {
|
||||
|
||||
|
||||
/**
|
||||
* Method for calculating a hypothesis value fr a specific input value x.
|
||||
* <br><br>
|
||||
* <i>
|
||||
* h(x) = theta0 * x0 + theta1 * x1 + ... + thetan * xn => transpose(theta) * x
|
||||
* </i>
|
||||
*/
|
||||
protected static double[] calculateHypotesis(double[][] x, double[] theta){
|
||||
return Matrix.multiply(x, theta);
|
||||
}
|
||||
|
||||
/**
|
||||
* Linear Regresion cost method.
|
||||
* <br /><br />
|
||||
* <i>
|
||||
* J(O) = 1 / (2 * m) * Σ { ( h(xi) - yi )^2 }
|
||||
* </i><br>
|
||||
* m = learning data size (rows)
|
||||
* @return a number indicating the error rate
|
||||
*/
|
||||
protected static double calculateCost(double[][] x, double[] y, double[] theta){
|
||||
return 1 / (2 * x.length) * Matrix.sum(
|
||||
Matrix.Elemental.pow(
|
||||
Matrix.subtract(calculateHypotesis(x, theta), y),
|
||||
2));
|
||||
}
|
||||
}
|
||||
57
test/zutil/benchmark/AnonymousFunctionBenchmark.java
Executable file
57
test/zutil/benchmark/AnonymousFunctionBenchmark.java
Executable file
|
|
@ -0,0 +1,57 @@
|
|||
package zutil.benchmark;
|
||||
|
||||
import com.carrotsearch.junitbenchmarks.BenchmarkRule;
|
||||
import org.junit.Rule;
|
||||
import org.junit.Test;
|
||||
|
||||
public class AnonymousFunctionBenchmark {
|
||||
public static final int TEST_EXECUTIONS = 500;
|
||||
|
||||
@Rule
|
||||
public BenchmarkRule benchmarkRun = new BenchmarkRule();
|
||||
|
||||
|
||||
private int[] array = new int[100_000];
|
||||
|
||||
|
||||
@Test
|
||||
public void functionLoop() {
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i = 0; i < array.length; i++) {
|
||||
array[i] = new CalcFunc(){
|
||||
public int calc(int i){
|
||||
return i+1;
|
||||
}
|
||||
}.calc(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void preFunctionLoop() {
|
||||
CalcFunc func = new CalcFunc(){
|
||||
public int calc(int i){
|
||||
return i+1;
|
||||
}
|
||||
};
|
||||
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i = 0; i < array.length; i++) {
|
||||
array[i] = func.calc(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void rawLoops(){
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i = 0; i < array.length; i++) {
|
||||
array[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private interface CalcFunc{
|
||||
int calc(int i);
|
||||
}
|
||||
}
|
||||
|
|
@ -11,30 +11,51 @@ public class LoopBenchmark {
|
|||
public BenchmarkRule benchmarkRun = new BenchmarkRule();
|
||||
|
||||
|
||||
private int[] matrix = new int[100_000];
|
||||
private int[] matrix2 = new int[50_000];
|
||||
private int[] array1 = new int[100_000];
|
||||
private int[] array2 = new int[50_000];
|
||||
|
||||
|
||||
@Test
|
||||
public void oneLoop() {
|
||||
public void writeArrayOneLoop() {
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i = 0; i < Math.max(matrix.length, matrix.length); i++) {
|
||||
if (i < matrix.length)
|
||||
matrix[i] = i;
|
||||
if (i < matrix2.length)
|
||||
matrix2[i] = i;
|
||||
for (int i = 0; i < Math.max(array1.length, array1.length); i++) {
|
||||
if (i < array1.length)
|
||||
array1[i] = i;
|
||||
if (i < array2.length)
|
||||
array2[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void twoLoops(){
|
||||
public void writeArraySeparateLoops(){
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i = 0; i < matrix.length; i++) {
|
||||
matrix[i] = i;
|
||||
for (int i = 0; i < array1.length; i++) {
|
||||
array1[i] = i;
|
||||
}
|
||||
for (int j = 0; j < matrix2.length; j++) {
|
||||
matrix2[j] = j;
|
||||
for (int j = 0; j < array2.length; j++) {
|
||||
array2[j] = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void readArrayLoop() {
|
||||
int sum = 0;
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i = 0; i < array1.length; i++) {
|
||||
sum += array1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void readArrayForeach() {
|
||||
int sum = 0;
|
||||
for(int k=0; k<TEST_EXECUTIONS; k++) {
|
||||
for (int i : array1) {
|
||||
sum += array1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,30 +7,30 @@ import static org.junit.Assert.*;
|
|||
/**
|
||||
*
|
||||
*/
|
||||
public class MatrixMathTest {
|
||||
public class MatrixTest {
|
||||
|
||||
@Test
|
||||
public void scalarAdd(){
|
||||
assertArrayEquals(new double[][]{{4,5},{-2,11}},
|
||||
MatrixMath.add(new double[][]{{2,3},{-4,9}}, 2));
|
||||
Matrix.add(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void scalarSubtraction(){
|
||||
assertArrayEquals(new double[][]{{0,1},{-6,7}},
|
||||
MatrixMath.subtract(new double[][]{{2,3},{-4,9}}, 2));
|
||||
Matrix.subtract(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void scalarMultiply(){
|
||||
assertArrayEquals(new double[][]{{4,6},{-8,18}},
|
||||
MatrixMath.multiply(new double[][]{{2,3},{-4,9}}, 2));
|
||||
Matrix.multiply(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void scalarDivision(){
|
||||
assertArrayEquals(new double[][]{{1,2},{-2,5}},
|
||||
MatrixMath.divide(new double[][]{{2,4},{-4,10}}, 2));
|
||||
Matrix.divide(new double[][]{{2,4},{-4,10}}, 2));
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -38,19 +38,33 @@ public class MatrixMathTest {
|
|||
@Test
|
||||
public void elementalAdd(){
|
||||
assertArrayEquals(new double[][]{{3,5},{-1,13}},
|
||||
MatrixMath.add(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
Matrix.Elemental.add(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalSubtract(){
|
||||
assertArrayEquals(new double[][]{{1,1},{-7,5}},
|
||||
MatrixMath.subtract(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
Matrix.Elemental.subtract(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalMultiply(){
|
||||
assertArrayEquals(new double[][]{{2,6},{-12,36}},
|
||||
MatrixMath.elemMultiply(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
Matrix.Elemental.multiply(new double[][]{{2,3},{-4,9}}, new double[][]{{1,2},{3,4}}));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalVectorPow(){
|
||||
assertArrayEquals(
|
||||
new double[]{4,9,16,81},
|
||||
Matrix.Elemental.pow(new double[]{2,3,-4,9}, 2),
|
||||
0.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void elementalMatrixPow(){
|
||||
assertArrayEquals(new double[][]{{4,9},{16,81}},
|
||||
Matrix.Elemental.pow(new double[][]{{2,3},{-4,9}}, 2));
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -59,7 +73,7 @@ public class MatrixMathTest {
|
|||
public void vectorMultiply(){
|
||||
assertArrayEquals(
|
||||
new double[]{8,14},
|
||||
MatrixMath.multiply(new double[][]{{2,3},{-4,9}}, new double[]{1,2}),
|
||||
Matrix.multiply(new double[][]{{2,3},{-4,9}}, new double[]{1,2}),
|
||||
0.0
|
||||
);
|
||||
}
|
||||
|
|
@ -68,18 +82,27 @@ public class MatrixMathTest {
|
|||
public void vectorDivision(){
|
||||
assertArrayEquals(
|
||||
new double[]{4,1},
|
||||
MatrixMath.divide(new double[][]{{2,4},{-4,10}}, new double[]{1,2}),
|
||||
Matrix.divide(new double[][]{{2,4},{-4,10}}, new double[]{1,2}),
|
||||
0.0
|
||||
);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void vectorSum(){
|
||||
assertEquals(
|
||||
20.0,
|
||||
Matrix.sum(new double[]{1,2,0,3,5,9}),
|
||||
0.02
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
|
||||
@Test
|
||||
public void matrixMultiply(){
|
||||
assertArrayEquals(
|
||||
new double[][]{{486,410.4,691.6},{314,341.6,416.4},{343.5,353.4,463.6},{173,285.2,190.8}},
|
||||
MatrixMath.multiply(
|
||||
Matrix.multiply(
|
||||
new double[][]{{1,2104},{1,1416},{1,1534},{1,852}},
|
||||
new double[][]{{-40,200,-150},{0.25,0.1,0.4}})
|
||||
);
|
||||
|
|
@ -89,21 +112,30 @@ public class MatrixMathTest {
|
|||
public void matrixTranspose(){
|
||||
assertArrayEquals(
|
||||
new double[][]{{1,3},{2,5},{0,9}},
|
||||
MatrixMath.transpose(
|
||||
Matrix.transpose(
|
||||
new double[][]{{1,2,0},{3,5,9}})
|
||||
);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void matrixSum(){
|
||||
assertEquals(
|
||||
20.0,
|
||||
Matrix.sum(new double[][]{{1,2,0},{3,5,9}}),
|
||||
0.02
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
|
||||
@Test
|
||||
public void identity(){
|
||||
assertArrayEquals(
|
||||
new double[][]{{1}},
|
||||
MatrixMath.identity(1));
|
||||
Matrix.identity(1));
|
||||
|
||||
assertArrayEquals(
|
||||
new double[][]{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}},
|
||||
MatrixMath.identity(4));
|
||||
Matrix.identity(4));
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue